Package index
-
textrpp_install()
textrpp_install_virtualenv()
- Install text required python packages in conda or virtualenv environment
-
textrpp_uninstall()
- Uninstall textrpp conda environment
-
textrpp_initialize()
- Initialize text required python packages
-
textEmbed()
- Embed text
-
textDimName()
- Change dimension names
-
textEmbedRawLayers()
- Extract layers of hidden states
-
textEmbedLayerAggregation()
- Aggregate layers
-
textEmbedReduce()
- Pre-trained dimension reduction (experimental)
-
textEmbedStatic()
- Apply static word embeddings
-
textFineTuneTask()
- Task Adapted Pre-Training (EXPERIMENTAL - under development)
-
textFineTuneDomain()
- Domain Adapted Pre-Training (EXPERIMENTAL - under development)
-
textGeneration()
- Text generation
-
textNER()
- Named Entity Recognition. (experimental)
-
textSum()
- Summarize texts. (experimental)
-
textQA()
- Question Answering. (experimental)
-
textTranslate()
- Translation. (experimental)
-
textZeroShot()
- Zero Shot Classification (Experimental)
-
textTrain()
- Trains word embeddings
-
textTrainLists()
- Train lists of word embeddings
-
textTrainRegression()
- Train word embeddings to a numeric variable.
-
textTrainRandomForest()
- Trains word embeddings usig random forest
-
textTrainN()
- Cross-validated accuracies across sample-sizes
-
textTrainNPlot()
- Plot cross-validated accuracies across sample sizes
-
textPredict()
textAssess()
textClassify()
- textPredict, textAssess and textClassify
-
textPredictTest()
- Significance testing correlations If only y1 is provided a t-test is computed, between the absolute error from yhat1-y1 and yhat2-y1.
-
textPredictAll()
- Predict from several models, selecting the correct input
-
textLBAM()
- The LBAM library
-
textSimilarity()
- Semantic Similarity
-
textDistance()
- Semantic distance
-
textSimilarityMatrix()
- Semantic similarity across multiple word embeddings
-
textDistanceMatrix()
- Semantic distance across multiple word embeddings
-
textSimilarityNorm()
- Semantic similarity between a text variable and a word norm
-
textDistanceNorm()
- Semantic distance between a text variable and a word norm
-
textProjection()
- Supervised Dimension Projection
-
textPlot()
- Plot words
-
textProjectionPlot()
- Plot Supervised Dimension Projection
-
textCentrality()
- Semantic similarity score between single words' and an aggregated word embeddings
-
textCentralityPlot()
- Plots words from textCentrality()
-
textPCA()
- textPCA()
-
textPCAPlot()
- textPCAPlot
-
textTopics()
- BERTopics
-
textTopicsTest()
- Wrapper for topicsTest function from the topics package
-
textTopicsWordcloud()
- Plot word clouds
-
textTopicsReduce()
- textTopicsReduce (EXPERIMENTAL)
-
textTopicsTree()
- textTopicsTest (EXPERIMENTAL) to get the hierarchical topic tree
-
textModels()
- Check downloaded, available models.
-
textModelLayers()
- Number of layers
-
textModelsRemove()
- Delete a specified model
-
textDescriptives()
- Compute descriptive statistics of character variables.
-
textClean()
- Cleans text from standard personal information
-
textTokenize()
- Tokenize text-variables
-
textTokenizeAndCount()
- Tokenize and count
-
textDomainCompare()
- Compare two language domains
-
textFindNonASCII()
- Detect non-ASCII characters
-
textCleanNonASCII()
- Clean non-ASCII characters
-
Language_based_assessment_data_8
- Text and numeric data for 10 participants.
-
word_embeddings_4
- Word embeddings for 4 text variables for 40 participants
-
raw_embeddings_1
- Word embeddings from textEmbedRawLayers function
-
Language_based_assessment_data_3_100
- Example text and numeric data.
-
DP_projections_HILS_SWLS_100
- Data for plotting a Dot Product Projection Plot.
-
centrality_data_harmony
- Example data for plotting a Semantic Centrality Plot.
-
PC_projections_satisfactionwords_40
- Example data for plotting a Principle Component Projection Plot.