textPCAPlot() plots words according to 2-D plot from 2 PCA components.
Usage
textPCAPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
title_top = "Principal Component (PC) Plot",
x_axes_label = "PC1",
y_axes_label = "PC2",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",
"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "PC",
legend_x_axes_label = "PC1",
legend_y_axes_label = "PC2",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1002
)
Arguments
- word_data
Dataframe from textPCA
- min_freq_words_test
Select words to significance test that have occurred at least min_freq_words_test (default = 1).
- plot_n_word_extreme
Number of words that are extreme on Supervised Dimension Projection per dimension. (i.e., even if not significant; per dimensions, where duplicates are removed).
- plot_n_word_frequency
Number of words based on being most frequent. (i.e., even if not significant).
- plot_n_words_middle
Number of words plotted that are in the middle in Supervised Dimension Projection score (i.e., even if not significant; per dimensions, where duplicates are removed).
- titles_color
Color for all the titles (default: "#61605e")
- title_top
Title (default " ")
- x_axes_label
Label on the x-axes.
- y_axes_label
Label on the y-axes.
- scale_x_axes_lim
Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits = scale_x_axes_lim); change e.g., by trying c(-5, 5)).
- scale_y_axes_lim
Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits = scale_y_axes_lim); change e.g., by trying c(-5, 5)).
- word_font
Font type (default: NULL).
- bivariate_color_codes
The different colors of the words (default: c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA", "#40DD52", "#FF0000", "#EA7467", "#85DB8E")).
- word_size_range
Vector with minimum and maximum font size (default: c(3, 8)).
- position_jitter_hight
Jitter height (default: .0).
- position_jitter_width
Jitter width (default: .03).
- point_size
Size of the points indicating the words' position (default: 0.5).
- arrow_transparency
Transparency of the lines between each word and point (default: 0.1).
- points_without_words_size
Size of the points not linked with a words (default is to not show it, i.e., 0).
- points_without_words_alpha
Transparency of the points not linked with a words (default is to not show it, i.e., 0).
- legend_title
Title on the color legend (default: "(PCA)".
- legend_x_axes_label
Label on the color legend (default: "(x)".
- legend_y_axes_label
Label on the color legend (default: "(y)".
- legend_x_position
Position on the x coordinates of the color legend (default: 0.02).
- legend_y_position
Position on the y coordinates of the color legend (default: 0.05).
- legend_h_size
Height of the color legend (default 0.15).
- legend_w_size
Width of the color legend (default 0.15).
- legend_title_size
Font size (default: 7).
- legend_number_size
Font size of the values in the legend (default: 2).
- seed
Set different seed.
See also
see textPCA
Examples
# The test-data included in the package is called: DP_projections_HILS_SWLS_100
# Supervised Dimension Projection Plot
principle_component_plot_projection <- textPCAPlot(PC_projections_satisfactionwords_40)
principle_component_plot_projection
#> $final_plot
#>
#> $description
#> [1] "INFORMATION ABOUT THE PROJECTION INFORMATION ABOUT THE PLOT word_data = PC_projections_satisfactionwords_40 min_freq_words_test = 1 plot_n_word_extreme = 5 plot_n_word_frequency = 5 plot_n_words_middle = 5 bivariate_color_codes = #398CF9 #60A1F7 #5dc688 #e07f6a #EAEAEA #40DD52 #FF0000 #EA7467 #85DB8E word_size_range = 3 - 8 position_jitter_hight = 0 position_jitter_width = 0.03 point_size = 0.5 arrow_transparency = 0.5 points_without_words_size = 0.2 points_without_words_alpha = 0.2 legend_x_position = 0.02 legend_y_position = 0.02 legend_h_size = 0.2 legend_w_size = 0.2 legend_title_size = 7 legend_number_size = 2"
#>
#> $processed_word_data
#> # A tibble: 292 × 13
#> words n Dim_PC1 Dim_PC2 check_extreme_max_PC1 check_extreme_max_PC2
#> <chr> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 acce… 1 -11.4 4.79 0 0
#> 2 acco… 2 -10.3 7.52 0 0
#> 3 achi… 1 3.08 17.1 0 0
#> 4 acti… 1 -3.79 8.28 0 0
#> 5 adeq… 1 -7.50 8.40 0 0
#> 6 alive 1 2.25 -1.43 0 0
#> 7 alone 1 8.31 -3.75 0 0
#> 8 ambi… 1 -8.43 -4.33 0 0
#> 9 amus… 1 11.8 -4.24 0 0
#> 10 anal… 1 2.28 6.42 0 0
#> # ℹ 282 more rows
#> # ℹ 7 more variables: check_extreme_min_PC1 <dbl>,
#> # check_extreme_min_PC2 <dbl>, check_extreme_frequency <dbl>,
#> # check_middle_PC1 <dbl>, check_middle_PC2 <dbl>, extremes_all <dbl>,
#> # colour_categories <chr>
#>
names(DP_projections_HILS_SWLS_100)
#> [1] "word_data"